<<
>>

Научная революция как выбор стратегий исследования. Селективная роль социальных факторов в выборе стратегий исследования.

Перестройка оснований исследования означает изменение самой стратегии научного поиска. Такая стратегия утверждается не сразу, а в борьбе с прежними установками видениями реальности.

Процесс утверждения в науке новых оснований определен не только предсказанием новых фактов и генерацией конкретных теоретических моделей, но и причинами социокультурного характера. Новые познавательные установки и генерированные ими знания должны быть вписаны в культуру соответствующей исторической эпохи и согласованы с лежащими в ее фундаменте ценностями и мировоззренческими структурами.

Перестройка оснований науки в период научной революции представляет собой выбор особых направлений роста знаний, обеспечивающих как расширение диапазона исследования объектов, так и скоррелированность динамики знания с ценностями и мировоззренческими установками соответствующей исторической эпохи. В период научной революции имеются несколько возможных путей роста знания. Можно выделить два аспекта нелинейности роста знаний.

1) связан с конкуренцией исследовательских программ в рамках отдельно взятой отрасли науки. Победа одной и вырождение другой программы направляют развитие этой отрасли науки по определенному руслу.

Рассмотрим в качестве примера борьбу двух направлений в классической электродинамике Ампера — Вебера, с одной стороны, и Фарадея — Максвелла — с другой. Максвелл, создавая теорию электромагнитного поля, длительное время не получал новых результатов, по сравнению с теми, которые давала электродинамика Ампера — Вебера. Лишь на заключительном этапе создания теории, открыв фундаментальные уравнения электромагнетизма, Максвелл получил знаменитые волновые решения и предсказал существование электромагнитных волн. Их экспериментальное обнаружение привело к триумфу максвелловского направления и утвердило представления о близкодействии и силовых полях как единственно верную основу физической картины мира.

Однако эффекты, которые интерпретировались как доказательство электромагнитных волн, могли быть предсказаны и в рамках амперовского направления. Риман допустил существование сил, распространяющихся с конечной скоростью, и вывел уравнение для потенциала, аналогичное лоренцовским уравнениям для запаздывающих потенциалов. Это уравнение могло бы лечь в основу предсказания эффектов, которые были интерпретированы в парадигме максвелловской электродинамики как распространение электромагнитных волн. Но этот путь развития электродинамики предполагал физическую картину мира, в которой постулировалось распространение сил с различной скоростью в пустом пространстве. В такой картине мира отсутствует эфир и представление об электромагнитных полях.

Физическая картина мира, в которой взаимодействие зарядов изображалось бы как передача сил с конечной скоростью без представлений о материальных полях, вполне возможна.

Однако при этом необходимо учитывать, что современные представления о природе формируются уже в иной научной традиции, чем в классическую эпоху, при наличии новых идеалов и норм объяснения физических процессов. Но «быть физиком» XX в. — нечто иное, чем «быть физиком» XIX столетия. В классический период физик не стал бы вводить «экстравагантных» представлений о физическом мире на том основании, что у него возникает новая перспективная математическая форма теории, детали эмпирического основания которой можно разработать в будущем. В классическую эпоху физическая картина мира, прежде чем генерировать новые теоретические идеи, должна была предстать как подтверждаемый опытом «наглядный портрет» реальности, который предшествовал построению теории.

Чтобы ввести в физическую картину мира той эпохи представление о силах, распространяющихся с различными скоростями, нужно было обосновать это представление в качестве наглядного образа «реального устройства природы». В традициях физического мышления той эпохи сила всегда связывалась с материальным носителем. Поэтому ее изменения во времени отточки к точке предполагали введение материальной субстанции, с состоянием которой связано изменение скорости распространения сил.

Но такие представления уже лежали в русле фарадеевско-максвелловской программы и были несовместимы с картиной Ампера — Вебера. Таким образом, причины, по которым идея Гаусса — Римана не оставила значительного следа в истории классической электродинамики XIX столетия, коренилась в стиле физического мышления данной исторической эпохи. Этот стиль мышления был одним из проявлений «классического» типа рациональности, реализованного в философии, науке и других феноменах сознания этой исторической эпохи. Такой тип рациональности предполагает, что мышление как бы со стороны обозревает объект, постигая таким путем его истинную природу.

Современный же стиль физического мышления предстает как проявление иного, неклассического типа рациональности, который характеризуется особым отношением мышления к объекту и самому себе. Здесь мышление воспроизводит объект как вплетенный в человеческую деятельность и строит образы объекта, соотнося их с представлениями об исторически сложившихся средствах его освоения. Мышление нащупывает далее и с той или иной степенью отчетливости осознает, что оно само есть аспект социального развития и поэтому детерминировано этим развитием. В таком типе рациональности однажды полученные образы сущности объекта не рассматриваются как единственно возможные.

Сам процесс формирования современного типа рациональности обусловлен процессами исторического развития общества, изменением «поля социальной механики», которая «подставляет вещи сознанию». Исследование этих процессов составляет особую задачу. Но в общей форме можно констатировать, что тип научного мышления, складывающийся в культуре некоторой исторической эпохи, всегда скоррелирован с характером общения и деятельности людей данной эпохи, обусловлен контекстом ее культуры. Факторы социальной детерминации познания воздействуют на соперничество исследовательских программ, активизируя одни пути их развертывания и притормаживая другие. В результате «селективной работы» этих факторов в рамках каждой научной дисциплины реализуются лишь некоторые из потенциально возможных путей научного развития, а остальные остаются нереализованными тенденциями.

2) связан с взаимодействием научных дисциплин, обусловленным в свою очередь особенностями как исследуемых объектов, так и социокультурной среды, внутри которой развивается наука.

Возникновение новых отраслей знания, смена лидеров науки, революции, связанные с преобразованиями картин исследуемой реальности и нормативов научной деятельности в отдельных ее отраслях, могут оказывать существенное воздействие на другие отрасли знания, изменяя их видение реальности, их идеалы и нормы исследования. Все эти процессы взаимодействия наук опосредуются различными феноменами культуры и сами оказывают на них активное обратное воздействие.

Учитывая все эти сложные опосредования, в развитии каждой науки можно выделить еще один тип потенциально возможных линий в ее истории, который представляет собой специфический аспект нелинейности научного прогресса. Особенности этого аспекта можно проиллюстрировать путем анализа истории квантовой механики.

Известно, что одним из ключевых моментов ее построения была разработка Н. Бором новой методологической идеи, согласно которой представления о физическом мире должны вводиться через объяснение операциональной схемы, выявляющей характеристики исследуемых объектов. В квантовой физике эта схема выражена посредством принципа дополнительности, согласно которому природа микрообъекта описывается путем двух дополнительных характеристик, коррелятивных двум типам приборов. Эта операциональная схема соединялась с рядом онтологических представлений, например о корпускулярно-волновой природе микрообъектов, существовании кванта действия, об объективной взаимосвязи динамических и статистических закономерностей физических процессов.

Однако квантовая картина физического мира не была целостной онтологией в традиционном понимании. Она не изображала природные процессы как причинно обусловленные взаимодействия некоторых объектов в пространстве и времени. Пространственно-временное и причинное описания рассматривались как дополнительные (в смысле Бора) характеристики поведения микрообъектов.

Отнесение к микрообъекту обоих типов описания осуществлялось только через объяснение операциональной схемы, которая объединяла различные и внешне несовместимые фрагменты онтологических представлений. Такой способ построения физической картины мира получил философское обоснование, с одной стороны, посредством ряда гносеологических идей, а с другой — благодаря развитию «категориальной сетки», в которой схватывались общие особенности предмета исследования.

Таким путем была построена концептуальная интерпретация математического аппарата квантовой механики. В период формирования этой теории описанный путь был, по-видимому, единственно возможным способом теоретического познания микромира. Но в дальнейшем наметилось видение квантовых объектов как сложных динамических самоорганизующихся систем. Как уже отмечалось, анализ языка квантовой теории показывает, что в самой ее концептуальной структуре имеются два уровня описания реальности: с одной стороны, понятия, описывающие целостность и устойчивость системы, с другой — понятия, выражающие типично случайные ее характеристики. Идея такого расчленения теоретического описания соответствует представлению о сложных системах, характеризующихся, с одной стороны, наличием подсистем со стохастическим взаимодействием между элементами, с другой — некоторым «управляющим» уровнем, обеспечивающим целостность системы. В пользу такого видения квантовых объектов свидетельствуют и те достижения теории квантованных полей, которые показывают ограниченность сложившихся представлении о локализации частиц.

Отмечая все эти тенденции в развитии физического знания, нельзя забывать, что само видение физических объектов как сложных динамических систем связано с концепцией, которая сформировалась благодаря развитию кибернетики, теории систем и освоению больших систем в технике. В период становления квантовой механики эта концепция еще не сложилась в науке, и в обиходе физического мышления не применялись представления об объектах как больших системах.

В принципе допустимо (в качестве мысленного эксперимента) предположение, что кибернетика и соответствующее освоение самоорганизующихся систем в технике могли возникнуть до квантовой физики и сформировать в культуре новый тип видения объектов. В этих условиях при построении картины мира физик смог бы представить квантовые объекты как сложные динамические системы и соответственно этому представлению создавать теорию. Но тогда иначе выглядела бы вся последующая эволюция физики. На этом пути ее развития, по-видимому, были бы не только приобретения, но и потери, поскольку при таком движении не обязательно сразу объяснять операциональную схему видения картины мира. Развитие науки осуществляется как превращение возможности в действительность, и не все возможности реализуются в ее истории.

28.

<< | >>
Источник: Философия науки. Ответы к экзамену. 2017

Еще по теме Научная революция как выбор стратегий исследования. Селективная роль социальных факторов в выборе стратегий исследования.:

  1. Научная революция как выбор стратегий исследования. Селективная роль социальных факторов в выборе стратегий исследования.